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ABSTRACT7

A conventional scientific workflow consists of many applications with untyped data flowing between them. Each
application builds an internal data structure from input files, performs an operation, and writes output files. In practice,
there are many data formats and many flavors of each. Compensating for this requires either highly flexible parsers on
the application side or extra interface code on the workflow side. Further, the idiosyncrasies of wrapped applications
limit the expressiveness of workflow languages; higher order functions, generics, compound data structures, and
type checking are not easily supported. An alternative approach is to create a workflow within a single programming
language using native functions rather than standalone applications. This offers programmatic flexibility, but mostly
limits usage to one language. To address this problem, we introduce morloc: a language that supports efficient
function composition between languages under a common type system. morloc gives the workflow designer the
power of a modern functional language while allowing the nodes of the workflow to be written freely in any supported
language as idiomatic functions of native data types.
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1 INTRODUCTION19

Computational researchers use a wide range of specialized programs on a daily basis. In the life sciences, these include20

tools for genome assembly, sequence similarity search, sequence alignment, phylogenetics, and protein modeling21

in addition to general data analysis, statistics and visualization. The heavy algorithms are typically implemented in22

high-performance languages like C and used as command line tools. Workflow-specific analytic steps are often written23

in higher languages like Python or R and applied as interpreted scripts within the pipeline or in notebooks that build24

on pipeline output. While applications may be strung together with shell scripts, dedicated workflow managers are25

often preferred for better scaling and reproducibility (Wratten et al., 2021). These include graphical workflow managers26

such Galaxy (The Galaxy Community, 2024), build tools like Snakemake (Mölder et al., 2021), specification languages27

like the Common Workflow Language (CWL) (Crusoe et al., 2022), and domain specific languages like Nextflow28

(Di Tommaso et al., 2017), BioShake (Bedő, 2019) and Cuneiform (Brandt et al., 2017).29

What these managers have in common is that nodes in the workflow are individually responsible for interpreting30

input and formatting output. Data between nodes is passed as files and each node must agree on the file format and be31

capable of reading and writing it. In this paradigm, scientific algorithms must be wrapped in applications that handle32

many layers of complexity beyond the pure algorithm itself (see Figure 1). The complexity of these applications and the33

data they operate on lead to many problems, including those listed below.34

Format problem. A node in a workflow must parse input data into native structures, operate on these structures,35

and format the results into output files. A given data structure may be formatted in many ways. Tabular data may be36

formatted as TAB-delimited files, Excel spreadsheets, Parquet, or JSON. In bioinformatics, there are many popular37

formats for storing biological data (sequences, alignments, trees, protein structures, etc). These formats are often38

creatively overloaded with custom information. For example, color palette information unique to one graphical program39

may be appended to a text field in a phylogenetics output file. Designing software with good format support is a hard40

task that must be repeated and specialized for every application.41

Agreement problem. The formatted output of one node must be readable by downstream nodes. Since many42

possible formats and format variants may store a specific data structure, nodes must agree on a shared representation.43

However, the formatting logic is hard-coded into the applications and the applications are usually written by different44

groups. Communities, then, must converge on formatting conventions and faithfully follow them. To avoid conflicts,45
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Figure 1. In a conventional pipeline a function is wrapped in six layers of extra complexity. The numbered trapezoids
are auxiliary functions. The blue triangles are points where parameters may be passed in from the user. The red
octagons are points where errors may be raised. The blue circles are data domains. f is the core algorithm. The read
layer maps the user arguments and files from the system to a set of raw inputs. The parse layer transforms raw inputs
into internal structures. The munge layer extracts the data needed for the core functions. The run layer applies the core
function to the extracted data structure. The join layer prepares the final results, possibly merging them with data that
was removed in the munge layer. The write layer formats output data and writes it to the system.

applications may need to support many formats, automatically guess formats, and handle misformatted files. Remaining46

conflicts must be resolved by adding extra glue code to the wrapper. New data with unexpected formatting conventions47

or uncommon patterns (like an apostrophe in a country name) can easily break pipelines.48

Monolith problem. Writing a dedicated application, with proper formatting and user interface, for every function is49

impractical. For this reason, application often cluster many independent functions behind one interface. The application50

may then play many different roles in a workflow. Command line arguments are required to select and specialize the51

different roles. Applications may have dozens or even hundreds of such options. These options may overlap across52

functions, over-ride one another, or be mutually exclusive. Testing and documenting all combinations is often infeasible53

and usage descriptions become bloated. Further, use of any function in the monolith imports the dependencies of all54

functions. Changes in any part of the monolith may trigger application-wide version increments. Bugs anywhere in the55

monolith may cause the entire system to fail.56

Text problem. Bioinformatics pipelines often rely on direct operations on structured textual formats. Writing a57

dedicated application for these manipulations that parses the file into a well-defined data structure and applies safe58

operators to transform the data, would require extensive coding (see Figure 1). So instead, it is common to rely on59

regular expressions over the literal text. For example, the second element in the header of a comma delimited table60

may be replaced with “foo” using the command line expression sed '1s/ˆ\([ˆ,]*\),\([ˆ,]*\)/\1,foo/'.61

Such operations are hard to maintain and commonly lead to bugs.62

Annotation problem. Data is typically passed between applications in formats that represent annotated collections63

of elements rather than the elements themselves. DNA sequence, for example, is usually passed as files that contain64

many sequences that each have an associated string annotation. If an element is changed in a pipeline, then the65

annotation may need to be updated. Alternatively, if new data is inferred for an element, it should be added to the66

element metadata. But when annotations are free text, with only conventions defining their form, there is no natural67

way to update or extend them. This hinders metadata propagation across the workflow.68

Collection problem. When many records are passed within one file, the application must define a strategy for69

processing the elements. Should element input order be preserved? Should all elements be streamed or fully loaded into70

memory? Should intermediate results be cached (and how)? Should log entries be written for each? Should elements be71

processed in parallel? The best choice in each of these circumstances depends on the usage context. When elements are72

independent, the application could be simplified to operate on just one element, the base case, instead of the whole73

collection. Then collection handling logic could be managed externally and applied consistently across the pipeline.74

But support for standard, multi-entry formats and high application overhead prevent this approach.75

Substitution problem. The design space for an application is huge: different conventions may be used for the76

interface; different formats may be supported; different choices may be made in caching, parallelism, and streaming. For77

this reason, even if two applications are fundamentally isomorphic (e.g., two sequence aligners), they cannot generally78

be substituted without refactoring pipeline code and risking the creation of new bugs. The high cost of substitution79
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favors continual use of legacy algorithms even when better alternatives exist.80

Abstraction problem. Most standard programming abstractions are not possible in workflow languages. Appli-81

cations cannot generally be passed as arguments due to the Substitution problem. Compound data structures cannot82

consistently be passed between applications since this would require format agreement. Polymorphism is usually83

limited to ad hoc additions to textual fields that are interpreted in special ways by certain tools or groups. Even basic84

function composition, the most fundamental prerequisite of all workflow programs, is not possible in general without85

context-specifc wrappers around the application.86

This paradigm leads to brittle, unreliable workflows that are hard to maintain and hard to extend. Each application87

in a workflow is responsible for many separate concerns (see Figure 1). The interfaces between the applications are88

complicated by idiosyncratic parameters and lack of format agreement. Resolving conflicts often requires unsafe textual89

processing of structured files. Annotations must be propagated and extended without knowing the annotation format.90

Applications must consider parallelization, data propagation, and caching without knowing the usage context. Logically91

identical applications cannot be easily or safely substituted. Vague formats and inconsistent application behavior prevent92

expressive programming styles. Workflow managers may be effective for large-scale batch processing of pipelines with93

a small number of large nodes that consume clean consistent data, but they deal poorly with complexity and delegate94

most work to the application creator.95

Complexity scaling can be improved by developing a workflow within a single language. Within the bioinformatics96

community, there are several language-specific projects designed to facilitate end-to-end analysis. These include Bioperl97

(Stajich et al., 2002), Biopython (Cock et al., 2009) and Bioconductor (R language) (Gentleman et al., 2004). The98

nodes of a single-language workflow are simply functions that communicate through native data structures in program99

memory. This resolves most of the problems discussed above. However, usage is limited to one language and no one100

language is best in all cases.101

As a third approach, we present morloc. The purpose of morloc can be summarized by two core goals. First,102

the programmer should be free to focus on writing functions rather than applications. They should be free to write103

in their favored language and without responsibility for wrappers, formatting, user interfaces, or APIs. Second, the104

workflow designer should be free to seamlessly compose these functions using an expressive functional language.105

morloc is a language that supports efficient function composition across languages under a common type system.106

The nodes in a morloc workflow are native functions imported from independent external libraries. All code needed107

for interoperability is automatically generated by the morloc compiler. The workflow is implemented in a simple108

functional programming language with full support for generics, parameterized types, type classes, and higher-order109

functions. morloc modules may be directly compiled into interactive command line tools or imported into other110

morloc programs.111

In the following sections, we introduce the core features of the language, describe the compiler architecture, evaluate112

performance, demonstrate usage through a deep case study, compare morloc to conventional systems, and finally113

discuss the future of morloc.114

2 LANGUAGE DESIGN115

Here we introduce the morloc language and show how it supports typed multi-lingual function composition. We will116

provide a practical description of the language and leave formal specification for later papers.117

2.1 Functions may be composed across languages118

In morloc, functions are sourced from foreign languages and unified under a common type system. Every sourced119

function is given a type signature that specifies the general types of the function’s inputs and output. These general120

types describe language-independent structures. They may be mapped to many different language-specific native121

types. Non-function types additionally map to a common morloc binary form (described in Section 2.4). The122

morloc compiler generates code in native languages that transforms native types to and from this shared binary form.123

Thus native types in different languages with the same general type can be automatically interconverted, allowing124

communication between languages.125

The morloc programmer may import functions and develop programs through composition without knowing126

anything but the function’s general type. The source programmer may develop functions of native data structures without127

handling serialization or using any morloc-specific idioms, dependencies, or syntax. These native functions may be128

exported to the morloc ecosystem with no extra boilerplate beyond the general type signature. These signatures serve129

as the interface between the two programmers.130
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Functions may be sourced as shown below:131

source Cpp from "foo.hpp" ("map", "sum", "snd")132

source Py from "foo.py" ("map", "sum", "snd")133

Here C++ and Python implementations of the three functions map, sum and snd are loaded. The files “foo.hpp” and134

“foo.py” will be imported into the generated code and must provide definitions for the three functions. For the Python135

file, “foo.py”, only snd needs to be explicitly defined, since map and sum are already in scope as Python builtins with136

correct name and type. So the “foo.py” file needs exactly two lines:137

def snd(pair):
return pair[1]

For the C++ source file “foo.hpp”, all three functions may be implemented in a simple header file. These files contain138

no morloc-specific syntax or dependencies and operate only on native data types.139

Next, the morloc programmer must specify the general types of the sourced functions by adding type signatures140

to the morloc script:141

map a b :: (a -> b) -> [a] -> [b]142

snd a b :: (a, b) -> b143

sum :: [Real] -> Real144

The type signatures loosely follow Haskell syntax conventions. The main difference is that generic terms (a and b here)145

must be introduced explicitly on the left. Bracketed terms (e.g., [a]) represent lists and comma separated terms in146

parentheses represent tuples. Arrows represent functions. (a -> b) is a function from generic type a to generic type147

b. The map type ((a->b)->[a]->[b]) can be seen as a function that takes two input arguments — the function148

(a->b) and the list [a] — and returns the list [b].149

Removing the list and tuple syntactic sugar, the signatures become:150

map a b :: (a -> b) -> List a -> List b151

snd a b :: Tuple2 a b -> b152

sum :: List Real -> Real153

List, Tuple2 and Real are general types. Since these general types may each map to multiple native types in a154

given language, explicit mappings are needed to avoid ambiguity. These mappings may be provided as language-specific155

type functions that evaluate to representations of the native type. Here are examples for C++ and Python:156

1 type Cpp => List a = "std::vector<$1>" a157

2 type Cpp => Tuple2 a b = "std::tuple<$1,$2>" a b158

3 type Cpp => Real = "double"159

4 type Py => List a = "list" a160

5 type Py => Tuple2 a b = "tuple" a b161

6 type Py => Real = "float"162

Type names in source languages, such as “list”, are quoted, since they may be syntactically illegal in morloc. General163

types, like Real, map to native types in the source language, such as "float". Parameterized types, like (List a),164

map to parameterized native types where parameters may be substituted to make the final type. For example, morloc165

represents the C++ type vector<double> as ("vector<$1>" "double"). The morloc representation shows166

that double is the parameter that vector expects (this is needed for typechecking) and $1 shows where the parameter167

appears in the C++ source type (it is inserted between the angle brackets).168

Sourced functions may be composed to create more complex functions. The following composition, sumSnd, sums169

the second values in a list of pairs:170

sumSnd xs = sum (map snd xs)171

This composition extracts the second value from a list of pairs and then sums them. In this case, the morloc compiler172

can infer the type, so no explicit type signature is required. The compiler internally erases all morloc compositions,173

such as sumSnd, rewriting them in terms of sourced functions. sumSnd will be rewritten as the anonymous function174

\ xs -> sum (map snd xs)175

To the morloc programmer, however, these functions are in all ways identical to sourced functions. The sumSnd176

function may be further simlified, as shown below, since morloc supports partial function application, eta-reduction,177

and the dot operator for function composition:178
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sumSnd = sum . map snd179

2.2 One term may have many definitions180

An unusual aspect of morloc is that one term may have multiple definitions. This is seen in morloc libraries where181

families of common functions are sourced from many supported languages. For example, the morloc module base182

exports functions such as operators over collections (e.g., map and fold), arithmetic and logical operators, and function183

combinators. These form a common functional vocabulary that may be composed to build complex programs that are184

polymorphic over language. When a specialized monoglot function is used, the polyglot context will adapt to optimize185

compatibility (see Figure 2). A term may also be assigned to multiple morloc expressions. Thus any term in the186

internal morloc abstract syntax tree may contain many alternative subtrees.187

In the example below, the function mean is given three definitions:188

1 import base (sum, div, size, fold, add)189

2 import types190

3 source Cpp from "mean.hpp" ("mean")191

4 mean :: [Real] -> Real192

5 mean xs = div (sum xs) (size xs)193

6 mean xs = div (fold 0 add xs) (size xs)194

Here we source an implementation directly from C++ and also write two local definitions. Which definition is used at a195

given place in a program will depend on context. In a C++ context, the C++ sourced definition will be used. In other196

cases, the smaller definition that uses sum will be chosen if sum is implemented for the contextually chosen language.197

Otherwise, the larger expression that sums explicitly by folding will be chosen.198

The compiler is responsible for selecting the implementations that maximize desired qualities of the final program.199

This is a complex optimization problem that will be a major focus of future work. For now we use a simple scoring200

system that penalizes between-language calls and the use of “slower” languages. When terms have equal scores, the201

term with fewer elements in its abstract syntax tree is chosen. When terms have the same size and score, an error is202

raised stating that there is no rule to resolve the definitions.203

All implementations for a given term must have the same general type; this is enforced by the typechecker. Type204

equivalence theoretically guarantees that the functions may be substituted and yield programs that can still be compiled205

and run, but it does not require functional equivalence. For control functions like map, all implementations should be206

equivalent (testing can confirm this). However, other functions, such as heuristic algorithms and machine learning207

models, may differ systematically. The compiler cannot yet model performance of non-equivalent functions, so208

programmers should avoid equating them.209

Support for multiple definitions alters the meaning of equality in morloc. The “=” operator in morloc implies210

that the right-hand expression is being added as one of the implementations of the left-hand term. Thus one may write:211

x = 1212

x = 2213

morloc has a rudimentary value checker that will raise an error for this class of primitive contradictions. Every pair of214

implementations for a given term are recursively evaluated to check for such contradictions. The value checker cannot215

currently check past source call boundaries, however, so contradictions such as the following will not be caught:216

x = div 1 (add 1 1)217

x = div 2 1218

Without specific knowledge about div, morloc cannot know that the functions are not equivalent. So the contradiction219

is missed and the simpler second definition is ultimately selected.220

2.3 Terms may be overloaded through typeclasses221

As discussed above, the equals operator can bind a term to multiple instances of the same type. Through typeclasses,222

a term may also be associated with instances of different types. A typeclass defines a set of generic terms with223

type-specific instances. They were inspired by Haskell typeclasses and are similar to interfaces in Java, traits in Rust,224

and concepts in C++20.225

Below are example definitions of Addable and Foldable classes:226
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1 class Addable a where227

2 zero a :: a228

3 add a :: a -> a -> a229

4230

5 instance Addable Int where231

6 source Py "arithmetic.py" ("add")232

7 source Cpp "arithmetic.hpp" ("add")233

8 zero = 0234

9235

10 instance Addable Real where236

11 source Py "arithmetic.py" ("add")237

12 source Cpp "arithmetic.hpp" ("add")238

13 zero = 0.0239

14240

15 class Foldable f where241

16 foldr a b :: (a -> b -> b) -> b -> f a -> b242

17243

18 instance Foldable List where244

19 source Py "foldable.py" ("foldr")245

20 source Cpp "foldable.hpp" ("foldr")246

21247

22 sum = foldr add zero248

Lines 1-3 define the typeclass Addable with two terms: zero and add. Lines 5-13 define integer and real instances249

for the Addable typeclass. The native functions may themselves be polymorphic, as is the case with add, which may250

be implemented in Python as:251

def add(x, y)
return x + y

And in C++ as252

template <class A>
A add(A x, A y){

return(x + y);
}

Lines 15-16 define the Foldable typeclass. Here f is a container of generic elements that can be iteratively reduced253

to a single value. Lines 18-20 define a Foldable instance for the List type.254

With the Addable and Foldable classes, we can define the polymorphic sum function (Line 22) that folds the255

add operator over a list of values with the initial accumulator of zero. The instances will be chosen statically after the256

types have been inferred by the typechecker.257

2.4 Types may be defined and passed between languages258

A core principle of morloc is that cross-language interoperability should be invisible. All terms in morloc have both259

a native type and a general type. The native type specifies how the data is represented in a given language. The general260

type specifies a common memory layout. The morloc compiler can automatically cast data in each native type to this261

common binary form. This is the foundation of morloc interoperability.262

morloc supports several fixed-width primitives and two collection types. The primitives include a unit type, a263

boolean type, signed and unsigned integers of 8, 16, 32 and 64 bit widths, and 32 and 64 bit floats. Next morloc264

offers the List type which is represented by a 64-bit integer storing the container size and a pointer to a vector of265

contiguous, fixed-size morloc values. Finally, morloc offers a tuple type that contain a fixed number of fixed-size266

values in contiguous memory. The primitives and the two types of collections are sufficient to represent all forms of267

data. The morloc compiler translates general types into schemas that are used by language-binding libraries to cast268

these common binary forms to/from native types.269

Records, such as structs in C or dictionaries in Python, are represented as tuples in memory. The field names are270

stored only in the type schema. Tabular data can be specified in exactly the same way as records, except the field types271

describe the column data types. Records and tables can be defined and instantiated as shown below:272
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Foreign call to language 2

Foreign call to language 1

Function in language 1

Function in language 2

map xs

f

g x

A

map (f . g)
monoglot (no penalty)

map xs

f

g x

B

map (f . g)
polyglot (2n foreign calls)

C

x

map

map xs

f

g

D

map xs

fg

let y

x y

xs

x

E

g

map

h

polyglot (n foreign calls)

map :: (a -> b) -> [a] -> [b]
f :: B -> C
g :: A -> B
h :: (A -> B) -> A -> C
xs :: [A]
x :: A 

map f . map g
polyglot (1 foreign calls)polyglot (n foreign call)

map (f . g)

Figure 2. The overhead cost of morloc is proportional to the number of required foreign calls. The best-case
performance of morloc is comparable to native code in the target language. This case occurs when all functions in the
final tree are in the same language (A). In this case, the generated code uses within-language function calls. The
worst-case performance is when every call is a foreign call (B). Foreign calls must message the foreign language server
and may require data reformatting and copying. The compiler attempts to minimize foreign calls. In (C), the compiler
reduces the number of foreign calls by moving evaluation of g x to the parent language context. Alternatively,
compositions may be written so that fewer foreign calls are necessary. In (D), f and g are “unfused” into two mapping
operations, each using a language-specific map function. When foreign functions that are not fully applied are passed
as arguments, no optimizations are possible (E). With respect to data transfer, workflow languages have performance
similar to morloc’s worst case, since all function calls require full serialization cycles.

1 record Person = Person { name :: Str, age :: UInt8 }273

2 alice = { name = "Alice", age = 27 }274

3275

4 table People = People { name :: Str, age :: Int }276

5 students = { name = ["Alice", "Bob"], age = [27, 25] }277

We may also define new types from these base types, for example we can define a Pair type as a tuple:278

type Pair x y = (x, y)279

Many types, though, have different structures in different languages. Suppose we want to use the parameterized type280

(Map k v). This type represents a data structure that associates keys of generic type k with values of generic type v.281

It may be structured in many ways, including a hashmap, binary tree, two-column table, or list of pairs. Before being282

converted to the morloc binary form, these structures must be reformatted into a common structure. This common283

form for Map may be a list of pairs (row form) or a pair of equal-length lists (column form). Transforming native types284

to the common form requires knowledge about the native data structure that the morloc compiler does not possess, so285

a pair of functions must be given that converts the type to and from a more basic form. These functions are provided as286

methods of the Packable typeclass. The class is defined as follows:287

class Packable a b where288

pack a b :: a -> b289

unpack a b :: b -> a290

a and b refer to the unpacked and packed forms of the type, respectively. The packed type is the type used by morloc291

functions, such as Map k v. The unpacked type is a reduced form that eliminates the top type term (in this case Map).292

The unpack functions may be recursively applied until a data structure is reduced entirely to basic types (primitives,293
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lists, and tuples). This final structure may then be transformed to the common binary form by the language-binders294

and passed to a foreign language. Reversing this process in the foreign language constructs the corresponding foreign295

type. The morloc compiler generates the code to perform these transformations, so the morloc user will not directly296

use the pack and unpack functions. This framework provides a general template for unifying data structures across297

languages.298

The Packable instance for the column-based representation of the Map type may be written as follows:299

1 type Py => Map key val = "dict" key val300

2 type Cpp => Map key val = "std::map<$1,$2>" key val301

3302

4 instance Packable ([a],[b]) (Map a b) where303

5 source Cpp from "map-packing.hpp" ("pack", "unpack")304

6 source Py from "map-packing.py" ("pack", "unpack")305

Some languages may not support the fully general parametric form. This can be expressed by implementing more306

specific instances of Packable. For example:307

1 type R => Map key val = "list" key val308

2309

3 instance Packable ([Str],[b]) (Map Str b) where310

4 source R from "map-packing.R" ("pack", "unpack")311

Here we define an instance of Map for R that is defined only when keys are strings. In cases where non-string keys are312

required, R implementations will be pruned. If no suitable implementations remain, a compile-time error will be raised.313

2.5 Modules may be defined and compiled into executables314

The organizational unit of morloc is the module. A module defines a set of terms and types and specifies what is315

exported. Below is a simple example:316

1 module foo (mean, add)317

2 import types318

3 source Cpp from "foo.hpp" ("mean", "add")319

4 mean :: [Real] -> Real320

5 add :: Real -> Real -> Real321

morloc has no special “main” function. Instead, a module may be directly compiled into an executable if all322

exports are non-generic (see Figure 3). The functions exported from this module are translated into an inventory of323

commands. Each command takes one positional parameter for each argument of the original function. Each positional324

parameter expects user input with format corresponding it the argument’s general type. Help messages are generated325

based on this type. Input may be supplied as either literal JSON strings or files containing JSON, MessagePack or326

morloc binary data. These user arguments will be translated automatically to native data types before being passed to327

the wrapped native functions.328

We can compile, print usage, and run an executable as follows:329

$ morloc make -o foo mean.loc
$ ./foo -h
The following commands are exported:
mean

param 1: [Real]
return: Real

add
param 1: Real
param 2: Real
return: Real

$ ./foo mean "[1,2,3]"
2.0

This simple interface serves as a toolbox of functions that can be used interactively on the command line. Future330

releases of morloc will support within-code documentation that is propagated to the generated interface. We will also331

explore alternative backend generators that make REST APIs, documentation pages, and basic graphical interfaces.332

When a morloc program is compiled, the compiler writes language-specific code to “pools” (one for each required333

language) and writes a “nexus” executable that accepts arguments from the user (see Figure 3). When the user passes a334
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Monoglot

Singular
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Generate
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Figure 3. The compiler typechecks the program, selects instances, and generates polyglot executables. The
Front End reads and checks morloc scripts. It produces a typed polyglot plural tree where every term has a single
general type and where functional terms may have many definitions in many languages. The Middle End prunes the
tree down to a forest of monoglot singular trees. The Back End organizes the many monoglot trees and generates the
source code that will be compiled into the final product. Starting at the first step in the Front End, Parse builds a syntax
tree from the morloc code and resolves inheritance across modules. Typecheck infers a general type for every term in
the tree and resolves typeclass instances. Valuecheck searches for conflicts between the implementations of each term.
Prune is a major optimization step that chooses a single implementation for each functional node. Segment breaks the
pruned tree into subtrees by language and derives language-specific types for each term. Serialize takes each monoglot
subtree and determines where (de)serialization is needed, generates serialization strategies, and determines how serial
and native forms are passed through a subtree. Pool partitions subtrees by language and gathers their dependencies.
Generate makes the source code for each language that implements the compositions specified in the morloc script
and that handles interop. Build interacts with language-specific compilers as needed to generate binaries. Dispatch
makes the user interface.

command to the nexus, the nexus starts a pool for each language used by the specified command. Each pool contains335

wrappers for all functions that are used in the pool language. When initialized, the pools listen over UNIX domain336

sockets for commands from the nexus or from other pools. When a command arrives, the pool spawns a new job in the337

background. The job executes a composition of native functions and handles transformations to native data types and338

foreign calls as needed.339

All communications between pools and the nexus are mediated through binary packets that each consist of a 32-byte340

header, a metadata block, and a data block. The header specifies version info, metadata length, data length, and packet341

type. The main packet types are “data” packets and “call” packets. A data packet describes a unit of morloc data and342

specifies how it is represented. The packet may contain a type schema in its metadata section. A call packet specifies the343

command that will be executed in the receiving pool and its data block is a contiguous vector of arguments formatted as344

morloc data packets.345

When a pool makes a foreign call, all arguments are translated to the common binary form and written to a memory346

volume shared between the nexus and all pools. Then a call packet is generated where each argument is written to the347

call packet data block as a data packet that stores a relative pointer to the argument data in the shared memory volume.348

The call packet is then sent to the foreign pool over a socket. The foreign pool reads the packet, translates the data in349

shared memory into native data structures (when needed), and executes the code. On success, the foreign pool writes350

the result to shared memory and returns a packet containing the relative pointer to the result. On failure, the foreign351

pool will return a data packet with the failing bit set and a message containing an error message. This message will be352

propagated back to the nexus and printed to the user.353
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3 AN ANALYSIS OF PERFORMANCE354
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Nextflow 3667 46 [ms] 1.51
Snakemake 498 121 [ms] 1.96
morloc: C to Py 50 60 [us] 1.62
morloc: Py to C 51 37 [us] 1.66
morloc: Py to Py 59 154 [ns] 0*
morloc: C to C 2 6 [ns] 0*
* statistically indistinguishable from 0

Figure 4. Runtime comparison between morloc and conventional workflow programs. (Top) Log-log plot
comparing runtimes for a linear pipeline of n nodes acting on data of zero-length. All tests involve n sequential calls
between languages in morloc or to a Python script in Nextflow and Snakemake. (Bottom Left) Comparison between
runtimes for linear pipelines of constant length with varying data input size. Each node copies the data and performs a
constant time modification. (Bottom Right) A table comparing start costs (S), call costs (Q), and data transfer costs (I)
(see Equation 1). These values where statistically inferred from the benchmark data. The call cost column of the table
is split into three cases by time units: conventional workflow languages (milliseconds), morloc programs with foreign
interop (microseconds), and morloc programs with no foreign interop (nanoseconds). Code and documentation are
available at https://github.com/morloc-project/examples. Benchmarks were run on an i7-10510U CPU and Samsung
PM981A 512GB SSD.

The runtime of a pipeline of identical components passing data of equal size can be modeled as:355

t(n,k) = S+Lk+n(Q+ Ik+Rk) (1)

Where t is the runtime of the pipeline as a function of the number of nodes in the pipeline (n) and the amount of356

data passing between each node (k). The runtime is equal to the constant cost of starting the pipeline (S seconds), plus357

the variable cost of loading initial data (L seconds per GB), plus the cost of running n nodes. Each node’s cost is equal358
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to the constant node startup cost (Q seconds), plus the cost of reading and writing data (I seconds per GB), plus the cost359

of running the program of interest (R seconds per GB, linear for our benchmark case).360

In a single-language functional program running locally, “nodes” are function calls and the runtime will typically be361

dominated by the cost of loading data (Lk) and applying it to each function in the pipeline (nRk). Q and I will be low362

since function calls are fast and data can be passed in memory.363

In conventional workflow languages, the costs of starting nodes and transferring data between them (Q and I,364

respectively) are high. Invoking a node requires a system call to a program, container, or web service. Transferring data365

between nodes requires a serialization cycle and the cost of sending data over a connection or moving it to and from366

files on the disk.367

morloc is a hybrid between these two approaches. Nodes within the same language can communicate as they368

would natively, with Q and I both nearly zero. Communication between languages is slower since a message must be369

passed over a socket and data may need to be refactored and possibly copied. The best possible performance in this370

architecture is limited to a few microseconds by the speed of transmission over a UNIX domain socket. The current371

morloc implementation generates code with modest additional overhead for processing the packets and starting372

workers (see Figure 4).373

Call overhead in morloc ranges from nanoseconds for native calls (depending on the cost of a function call in the374

native language) to tens of microseconds for foreign calls. For conventional workflows, call overhead is lower-bound by375

the cost of invoking an external resources. In this study, that resources was a light Python program with a 100ms startup376

time. The cost of passing data between nodes is nearly zero for native calls in morloc. For foreign morloc calls,377

data transfer rates measured in this benchmark was similar to Snakemake/Nextflow.378

These benchmarks were done on a local machine and without parallelism. All morloc language pools are multi-379

threaded and naturally support local parallelism. Work may be parallelized using generic control functions, such as380

parallel versions of the basic map function. This might be implemented in Python as follows:381

import multiprocessing
def pmap(f, xs):

with multiprocessing.Pool() as pool:
results = pool.map(f, xs)

return results

The morloc type signature of pmap is the same as its non-parallel cousin, so it is a drop-in replacement. In382

contrast, conventional workflow managers delegate fine-grained parallelism to the application.383

Where workflow managers excel is in distributed computing where many large applications are run in parallel on384

different data. morloc has experimental support for remote job submission as well. In morloc, a remote job is not385

unlike a local foreign call. In both cases, data must be sent from one language pool to another. The data reformatting386

steps are the same for both. Within the compiler, the main difference is that the function tree needs to be segmented by387

locallity, not just language. On a shared file system, the data may be “sent” to the remote machine by serializing the call388

packet and associated data from the shared memory volume to the disc. Then a SLURM job is submitted that starts the389

remote morloc nexus with the call packet. The remote nexus sends the job to the proper pool and writes the returned390

result to a binary output file. This output is then read by the local calling pool after the remote worker closes. Caching391

of intermediate results is also supported via functional memoization.392

morloc terms may be given labels that target them for remote execution. For example:393

foo = merge . map big:myJob394

The big label is a hook we can use to provide annotations such as where and how myJob is run. The annotations395

are included in a YAML file associated with the morloc program. In this example, merge and map are both local396

and each myJob function is run on a remote node. myJob may be an arbitrarily complex morloc composition and397

may submit its own jobs recursively. While still immature, the general approach allows fine, unobtrusive control over398

execution.399

4 CASE STUDY: INFLUENZA STRAIN CLASSIFICATION WITH THREE LANGUAGES400

This case study shows how multiple languages are interwoven and how complex programs and types are defined in401

morloc. We reproduce an influenza virus classification pipeline developed by Chang et al. (2019). In this workflow,402

influenza strains within a given time range are retrieved from an online database, a phylogenetic tree is constructed,403

11/24



Retrieve Make Tree Classify Visualize

FluConfig

[(a, Sequence)]

(RootedTree () Real a)

(RootedTree Clade Real a)

PDF

main.loc file structure

1 module flucase (plot)
2 import types
3 import lib.flutypes
4 import lib.retrieve (retrieve, setLeafName, FluConfig)
5 import lib.classify (classify)
6 import lib.treeplot (plotTree)
7 import bio.algo (upgma)
8 import bio.tree (treeBy, mapLeaf)
9 plot :: FluConfig -> ()

10 plot config =
11 ( plotTree config@treefile
12 . mapLeaf setLeafName
13 . classify
14 . treeBy upgma
15 . retrieve
16 ) config

Figure 5. Influenza classification case study overview. The case study consists of four major steps (top). Retrieve
takes a configuration record, FluConfig, and prepares a list of sequences and their annotations (represented as the
generic a, for simplicity). Make tree builds a phylogenetic tree from the retrieved sequences, returning a
RootedTree object. The tree type has three parameters representing the node type, edge type, and leaf type. Classify
determines the clade of each unlabeled leaf based on the labeled reference leaves. Visualize makes a plot of the tree.
The main morloc script is shown on the bottom left and the working directory on bottom right.

clades (biologically distinct subtrees) are identified using a set of reference strains, and the final labeled tree is plotted.404

The pipeline applies Python for data retrieval, C++ for algorithms, and R for visualization (see Figure 5).405

The main morloc script (Figure 5, bottom left) defines the module flucase and exports the function plot.406

This script imports required types and functions (lines 2-8) and defines the exported plot function (lines 9-16) as a407

composition of five functions that takes a FluConfig record as input. The following sections will outline the four408

steps in Figure 5 and describe how the tree type is defined.409

4.1 Retrieve and clean data410

The first step in the pipeline is the retrieval of data from the Entrez database (Schuler et al., 1996). This task is performed411

by the retrieve function with the following signature:412

retrieve :: FluConfig -> [((JsonObj, Clade), Sequence)]413

The input is a FluConfig record that is defined in lib.flutypes as:414

record FluConfig = FluConfig415

{ mindate :: Date416

, maxdate :: Date417

, reffile :: Filename418

, treefile :: Filename419

, query :: Str420

, email :: Str }421

The record contains the query data range, the query string, an email (reqired by the remote database), and reference and422

output filenames. morloc does not, and never will, have keyword arguments. When many arguments are needed, they423

may be organized into records, allowing full sets of parameters to be clearly defined and transported.424
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The output of retrieve is a list of annotated sequences. The annotation is a pair of values, first a JSON object425

storing the full metadata record and second the clade assignment (either an empty string or the clade stored in the426

reference map). The JsonObj type specifies the JSON formatted metadata that is retrieved from the remote database.427

This type is defined in the json module as follows:428

type Py => JsonObj = "dict"429

type R => JsonObj = "list"430

-- from Niels Lohmann's json package (https://github.com/nlohmann)431

type Cpp => JsonObj = "ordered_json"432

433

instance Packable (Str) JsonObj where434

...435

The Packable instance for JsonObj defines functions for translating JSON strings to and from the different436

native data structures, such as dictionaries in Python.437

The Clade, Date, and Filename types are all aliases for the string type. While the specialized names clarify438

type signatures, they do not provide additional type safety. We could alternatively define them as unique types by439

specifying Packable instances that map them to strings with identity functions for the pack and unpack methods.440

These types would then raise helpful errors at compile time when misused.441

The retrieve function is defined as follows:442

1 retrieve config =443

2 ( map (onFst (labelRef refmap)) -- add reference clades444

3 . concat -- flatten list of lists445

4 . map ( map parseRecord -- parse wanted data from XML records446

5 . sleep 1.0 -- pause between calls to not overuse the API447

6 . fetchRecords fetchConfig -- retrieve XML records for chunk448

7 )449

8 . shard 30 -- split list into chunks450

9 . join (keys refmap) -- add the reference IDs to list451

10 . fetchIds searchConfig -- send query to get strain IDs452

11 ) config@query -- access the query in the config record453

12 where454

13 refmap = readMap config@reffile -- open the reference to clade map455

14 searchConfig = -- set parameters for the search456

15 { email = config@email457

16 , db = "nuccore"458

17 , mindate = config@mindate459

18 , maxdate = config@maxdate460

19 , retmax = 1000461

20 }462

21 fetchConfig = { email = config@email } -- set parameters for fetchRecords463

Lines 1-11 define the function composition that runs a query, retrieves full data records on all returned ids in chunks464

of 30, flattens the list of chunks to a list, and finally adds in clade labels from the table of references. Lines 12-21 is a465

where block that defines terms that are available within the scope of the retrieve function.466

4.2 Define tree types467

Phylogenetic trees are represented with the (RootedTree n e l) type. The parameters represent node type (n),468

edge type (e), and leaf type (l). In a phylogenetic tree, the node often contains a metric of confidence in the inference of469

its children, though we will use it later to store clade names. The edge type usually represents branch length. The leaf470

may contain the taxon name and other metadata.471

The RootedTree type is unpacked as a tuple of three elements: a node list, an edge list, and a leaf list. The node472

and leaf lists are ordered sets of data for each node and leaf. The edge list is a list of tuples of three elements: parent473

index, child index, and generic edge data. Node indices range from 0 to N −1, where N is the number of nodes. Leaf474

indices range from N to N+L−1, where L is the number of leaves. This convention is adapted from the R phylogenetic475

representation of trees used in phylo objects.476

The RootedTree type is declared in bio.tree as:477
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1 type Cpp => (RootedTree n e l) = "RootedTree<$1,$2,$3>" n e l478

2 type R => (RootedTree n e l) = "phylo" n e l479

3 instance Packable ([n], [(Int, Int, e)], [l]) (RootedTree n e l) where480

4 source Cpp from "rooted_tree.hpp" ("pack_tree" as pack, "unpack_tree" as481

unpack)482

5 instance Packable ([Str], [(Int, Int, Real)], [Str]) (RootedTree Str Real Str)483

where484

6 source R from "tree.R" ("pack_tree" as pack, "unpack_tree" as unpack)485

In C++, we map the RootedTree type to a custom recursive structure. In R, we map it to the pre-existing R486

phylo class. Unlike the morloc RootedTree type, R phylo objects are not generic since nodes and leaves are487

always strings and edges are always numeric. This type limitation is reflected in the R instance above. Attempts to use488

the phylo object more generically will fail at compile time.489

4.3 Build trees and classify strains490

The next steps in the pipeline are to build phylogenetic trees and then classify the strains. We implement these491

computationally expensive steps in C++.492

In the main plot function, the tree is built with the command (treeBy upgma). treeBy is a generic control493

function that applies a tree building algorithm to an annotated list of sequences and returns an annotated tree. It has the494

following signature:495

treeBy n e l b :: ([b] -> RootedTree n e Int) -> [(l, b)] -> RootedTree n e l496

treeBy accepts two arguments: a tree building algorithm and a list of annotated sequences. It unzips the list of497

annotation/sequence pairs into two lists and feeds the list of sequences to the tree algorithm. This algorithm creates a498

tree from just the sequences and stores sequence indices in the leaves. treeBy then weaves the original annotations499

back into the new tree using the indices in the leaves. This allows the tree algorithm to be a pure function of the500

sequences and guarantees that the sequence annotations are not altered by the tree builder.501

countKmers kmerDistance upgmaFromDist
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Figure 6. Algorithm for building a tree from sequence. The phylogenetic tree building starts with unaligned DNA
sequences, counts the k-mers in each sequence (2-mers in this figure), creates a distance matrix from the counts, and
then creates a tree from the distance matrix using the UPGMA algorithm.

In this case study, we use a simple UPGMA algorithm that builds a tree from a distance matrix (see Figure 6). This502

is implemented in the bio module as follows:503

1 source Cpp from "algo.hpp" ("countKmers", "kmerDistance", "upgmaFromDist")504

2 countKmers :: Int -> Str -> Map Str Int505

3 kmerDistance :: Map Str Int -> Map Str Int -> Real506

4 upgmaFromDist :: Matrix Real -> RootedTree () Real Int507

5508

6 makeDist :: Int -> [Str] -> Matrix Real509

7 makeDist k = selfcmp kmerDistance . map (countKmers k)510

8511

9 upgma :: [Str] -> RootedTree () Real Int512

10 upgma = upgmaFromDist . makeDist 8513

In our implementation, the distance matrix is made by comparing the number of occurences of each k-mer in each514

sequence. This is done in makeDist by composing countKmers and selfCmp, a function that creates a square515
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matrix from a vector by calling a distance function on each pair-wise value in the input vector. The distance metric516

is the square root of the sum of squared k-mer frequency differences (as defined in kmerDistance). A general517

implementation of the UPGMA algorithm is provided by the upgmaFromDist function. This is written as a simple518

C++ function that takes a matrix of doubles (using the matrix type from the eigen library) and returns a RootedTree519

structure. The upgma function is a composition of a function that builds a distance matrix and a pure implementation520

of the tree-building UPGMA algorithm.521

The input to the upgma function is a list of unaligned sequences and the output is a rooted tree with null node522

labels, numeric edge values (branch lengths), and integers on the leaves representing the sequence indices in the input523

list. This signature is shared by all functions in the family of phylogenetic algorithms that create rooted trees from524

sequence alone. There are other families. Algorithms that estimate uncertainty at each node would replace the “()”525

parameter with a numeric type. Algorithms that produce an ensemble of trees would return a list of trees. The type526

system here provides a succinct, machine-checked method for logically organizing families of algorithms.527

4.4 Traverse the tree to assign clade labels to leaves528

After building the tree, the reference strains with labeled clades are used to infer the clades of unlabeled strains. This is529

done by the classify function:530

1 classify n e a :: RootedTree n e (a, Clade) -> RootedTree Str e (a, Clade)531

2 classify532

3 = push id passClade setLeaf533

4 . pullNode snd pullClade534

5 where535

6 passClade parent edge child =536

7 (edge, ifelse (eq 0 (size child)) parent child)537

8 setLeaf parent edge leaf = (edge, (fst leaf, parent))538

9 pullClade xs539

10 = branch (eq 1 . size) head (const "") seenClades540

11 where541

12 seenClades = ( unique542

13 . filter (ne 0 . size)543

14 ) xs544

This function relies on two general tree traversal algorithms. The first, pullNode, makes distal nodes from leaves545

and then makes parent nodes from child nodes all the way down to root. The second, push, creates new child nodes546

based on old parent and old child nodes. In this case, it pushes the parent label into unlabeled children.547

The pullNode function is a specialization of the pull function:548

1 pull n e l n' e'549

2 :: (l -> n') -- create a new node from a leaf550

3 -> (n -> e -> n' -> e') -- synthesize a new edge551

4 -> (n -> [(e', n')] -> n') -- synthesize a new node552

5 -> RootedTree n e l -- input tree553

6 -> RootedTree n' e' l -- output tree554

pull is a highly general function defined in the bio.tree morloc library for altering trees from leaf to root. It555

takes three functional arguments. The first extracts an initial value from a leaf. The second makes a new edge from the556

old parent node, the old edge, and the new child node. The third makes a new parent node from the old parent node and557

the new child nodes and edges. pullNode is defined in terms of pull as follows:558

1 pullNode n e l n'559

2 :: (l -> n') -> ([n'] -> n') -> RootedTree n e l -> RootedTree n' e l560

3 pullNode f g = pull561

4 f -- generate a new node using f562

5 (\n e n' -> e) -- return the original edge563

6 (\n es -> g (map snd es)) -- create new node from child nodes564

This specialized function requires only two functional arguments, one for creating initial values from leaf values565

and one for creating new parent nodes from new child nodes. In the classify definition, pullNode is passed the566

functional arguments snd and pullClade. snd determines how the new node is created from a leaf at the tip of567
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the tree: it selects the second element in a tuple. Based on the type signature of classify, the input tree has type:568

(RootedTree n e (a, Clade)). So snd sets the new terminal nodes to the strain clade. pullClade, from569

Lines 9-14 of the classify definition, specifies how the children of a node determine the new node value. It sets a570

parent node to the clade of its children if all child nodes either share the same clade or are undefined. Otherwise it sets571

the parent node as undefined (an empty string).572

The generic branch function used in pullClade is a variant of an if-else with the signature:573

branch a b :: (a -> Bool) -> (a -> b) -> (a -> b) -> a -> b574

If the first argument to branch, a predicate of the input a, returns true, the second functional argument is called575

on the input a. Otherwise the third function is called. In our context, if children are from different clades, no parent576

clade is inferred. seenClades is a unique list of non-empty child clades. If its size is exactly 1, then children share a577

common clade and the parent clade is set to the first (and only) element in the list using the head function. Otherwise,578

the parent clade is set to an empty string using the const function. const has type a->b->a; here it is given an579

empty string and will ignore the empty list it is passed.580

A simpler alternative to branch would be an ifelse function of type:581

ifelse a :: Bool -> a -> a -> a582

However, this function would evaluate both the “if” and “else” blocks in non-lazy languages, leading to an error583

when head tries to take the first element from an empty list.584

Returning to the classify implementation, the generic push function rewrites a tree from root to leaf. It takes585

three functional arguments as shown in the signature below:586

1 push n e l n' e' l'587

2 :: (n -> n') -- initialize new root588

3 -> (n' -> e -> n -> (e', n')) -- alter child nodes589

4 -> (n' -> e -> l -> (e', l')) -- alter leaves590

5 -> RootedTree n e l -- input tree591

6 -> RootedTree n' e' l' -- output tree592

In classify, the first argument is the identity function since we are not changing the node type. The second593

function, passClade, passes the parent clade to the child if the child clade is undefined (empty string). The third594

function, setLeaf, sets the child leaf to the parent leaf while preserving the original leaf annotation. The final effect595

is to label all leaves that descend from labeled nodes.596

We opted for a fine-grained implementation of classify. We could instead have sourced pullClade, push597

or classify directly from C++ rather than composing them in morloc. Such granularity decisions are common598

when writing morloc programs. A fine-grained representation exposes more workflow logic to the reader, expands599

the code that is typechecked, allows more code reuse, and increases the modularity of the program. A coarse-grained600

representation, in contrast, grants more control over implementation.601

4.5 Visualize the tree602

The final step in the pipeline is to plot the tree. The tree object returned from the classify function contains a603

metadata record for each leaf. From these records, we can synthesize informative leaf labels that will be used in the604

plotted tree. Recalling the definition of plot from the main script and adding types in comments:605

plot config =606

( plotTree config@treefile -- ()607

. mapLeaf setLeafName -- RootedTree () Real Str608

. classify -- RootedTree Str Real(JsonObj, Clade)609

. treeBy upgma -- RootedTree () Real (JsonObj, Clade)610

. retrieve -- [((JsonObj, Clade), Sequence)]611

) config -- FluConfig612

The output of plotTree is the Unit type () indicating nothing is returned. As a side-effect, the function creates a613

tree file with the name given in the configuration object (config@treefile). The final tree is shown in Figure 7.614

We use mapLeaf to apply setLeafName to each leaf in the tree. setLeafName reads a leaf’s metadata and615

generates the label that will appear in the final phylogenetic tree. Since the metadata was originally retrieved and parsed616

using Python code, it reasonable to write setLeafName in Python as well and include it in the “entrez.py” file. This617

encapsulates all Entez-related code in one place.618
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But if setLeafName is in Python and tree-handling algorithms, including mapLeaf, are all in C++, then a619

foreign call from C to Python will be required for every leaf. Any overhead in foreign function calls will be multiplied620

by the number of leaves in the tree. In morloc, this overhead is around 60 microseconds per call (Figure 4). If better621

performance is needed, we can translate setLeafName to C++ and add a one-line type signature to the morloc622

source statement. The compiler will automatically choose the new C++ implementation since it reduces the number of623

foreign calls.624

After naming the leaves, the next step is to plot the tree. We could implement plotting at a fine scale in morloc,625

but most plotting libraries do not lend themselves well to functional composition since they rely on unique grammars626

(e.g., ggplot) or mutability (e.g., matplotlib). So we source the plotting function from R with the type:627

plotTree n :: Filename -> RootedTree n Real Str -> ()628

We require the edges be parameterized as real numbers since they represent branch lengths. The nodes may be left629

generic since clade labels have been pushed into the leaves. plotTree returns the null type. It is run for its side effect630

of writing a plot of the given tree to a file.631

Figure 7. The final tree. Leaves are labeled with the strain clade, accession, and sequence length.

4.6 Comparison to conventional pipeline632

This case study demonstrates several features of morloc that are lacking in conventional pipelines. Together, these633

features solve each of the problems presented in the introduction. Many of the features are common in general634

programming languages but are lost in workflow languages where functions are replaced with applications.635

morloc allows data to be represented in its most natural form. Functions in morloc align neatly to conceptual636

algorithmic forms. The UPGMA tree building algorithm, for instance, is fundamentally a function from a distance637

matrix to a tree. The morloc type exactly matches this form by sourcing an idiomatic C++ function of a numeric638

matrix that returns a simple tree object. Traditional bioinformatics pipelines replace pure functions like this with639

applications. Rather than a distance matrix, the application must choose a file format to carry the distance matrix and640

must decide how to parse and propagate any associated metadata. More likely, an application would merge the distance641

matrix creation step and the tree building step into one function. This merge within the application prevents the two642

individual functions from being reused in other contexts.643
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Figure 8. Comparison of paradigms. (A-D) Show the call trees for four possible implementations of this case study.
In the morloc implementation (A), the R plot function is evaluated first from an R context. A foreign call is made to
the C++ pool requesting a tree from mapLeafs rename, classify and upgma. This last C++ function makes a
foreign call to retrieve in Python. The Python implementations (B) differs in that Python is the main language from
root to tip. The Python programmer, or the creator of imported Python modules, is responsible for designing the
Python/C++ and Python/R interfaces. The Bash/workflow implementation (C) replaces each function with a standalone
application (represented by a box). Each edge in the tree represents data passed as files in a specialized format (in red).
Since free annotations cannot easily be added to file formats like FASTA and newick (for sequences and trees,
respectively), the annotation metadata and clade predictions must be sent to separate files and then woven together with
a dedicated tool (merge). Hybrid systems are possible (D), where a conventional workflow system uses morloc
executables as nodes. In this case, the files between nodes are JSON representations of morloc data structures. Six
implementations — morloc, Python, Bash, Snakemake, Nextflow, and hybrid (Snakemake and morloc) — are
available at https://github.com/morloc-project/examples.

morloc supports unconstrained modularity. Most morloc functions are pure functions. Complex behavior644

is built through composition. These compositions are checked and data is passed in well-defined structures. There645

is little or no overhead to morloc function calls and no formatting limitations. The programmer is free to organize646

functions to match the layout of the algorithm. Further, as seen in the implementation of upgma, all functions used647

in the algorithm can be exported and reused independently. In contrast, traditional pipelines must force enough work648

into each node to justify their high overhead and input/output must conform to accepted file formats. So modularity is649

limited to large operations over a sparse set of intermediate data types. Even this limited modularity is corrupted by650

format ambiguities and side effects that, for every new use context, necessitate careful testing and often new glue code.651

morloc supports generic and compound data. In the case study, both genetic sequences and their metadata are652

passed as a compound data structure of type [(a, Sequence)]. Functions may be mapped across the sequence653

values without the possibility of altering the metadata (and vice versa). The metadata may be passed cleanly into654

completely new structures, such as the tree type in the case study. Such flexibility and well-defined coupling and655

transport are not possible in traditional bioinformatics pipelines where metadata is strongly limited by file format and656

where transformations between formats is usually lossy and ambiguous.657

morloc supports higher-order functions. In morloc, functions can be passed as arguments, enabling functions658

to control the flow of operations. For example, onFst applies a given function exclusively to the first element of a659

tuple. map applies a function to every element in a list. foldTree recursively applies provided functions to reduce a660

tree into a single value. In each case, structural control logic is cleanly separated from application logic. This increases661
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the reuse of complex control logic which improves consistency and reduces the likelihood of bugs. In conventional662

workflows, this finer logic would have to be handled within the applications themselves. Each application would have to663

independently solve problems like tree traversal. This limitation of traditional workflow languages restricts programmer664

freedom and forces more work onto application developers.665

morloc nodes are simple functions rather than scripts. Each node in a morloc program is implemented as an666

independent, idiomatic function in the chosen language. morloc imposes no constraints on these functions beyond the667

expected type signature (see Table 1). In a conventional workflow, a node is instead an application that is saddled with668

all the complexity described in the introduction (see Figure 1). Some workflow managers reduce the complexity a little669

through specialized code evaluation that bypasses the need to give the scripts full command line interfaces. Nextflow670

can pre-process a script template before execution to expand workflow variables to arbitrary strings of code. Snakemake671

can evaluate a script in a special context where a Snakemake object that stores workflow variables is added to scope. In672

both cases, the target source code uses workflow-specific syntax to access the workflow namespace. This complicates673

the code, interferes with testing and linting, and prevents reuse outside the workflow (see Table 1).674

morloc reduces function call overhead. Traditional workflow managers support mapping inputs (usually files)675

over applications, but high overhead costs (Figure 4) make these programs inefficient at running many small functions.676

To compensate, they pack more work into each node. Individual nodes often operate on many values (e.g., sequences in677

multi-entry FASTA files) and implement their own particular parallelization schemes with accompanying dependencies678

and architectural requirements. morloc’s overhead, in contrast, is nearly zero in the best case and orders of magnitude679

lower in the worst case (Figure 4). So the morloc programmer can efficiently work with concise functions and exercise680

fine control over their execution and parallelization. Further, they can reuse high-performance parallelization code, thus681

reducing the number of dependencies and improving performance.682

main.loc — Morloc sqr.py
module sqr (val)
source Py from "sqr.py" ("sqr")
sqr :: Int -> Int
type Py => Int = "int"
val = sqr 2

def sqr(x):
return (x * x)

main.nf — Nextflow templates/sqr.py
process SQR {

input: val x
output: path "result"
script: template "sqr.py" }

workflow { SQR( 2 ) }

#!/usr/bin/env python3

with open("result", "w") as fh:
print(${x} * ${x}, file=fh)

Snakefile — Snakemake scripts/sqr.py
rule add:

output: "result"
params: x = 1,
script: "sqr.py"

with open(snakemake.output[0], "w") as fh:
print(
snakemake.params.x * snakemake.params.x,
file = fh)

Table 1. Scripts and components in morloc, Nexflow and Snakemake. The morloc script (top left) imports and
types a simple function from the Python source “sqr.py” (top right). The Nextflow script (middle left) uses a Python
template (middle right) that is processed into an executable Python program. The template must contain the instructions
for its own execution, hence the shebang in line 1. Nextflow will expand ${x} into the literal 2 before execution.
Before this expansion, the Python code is syntactically incorrect (see red blocks around the $ signs). The Snakemake
script (bottom left) copies the Python code scripts/sqr.py (bottom right) into a Python wrapper that defines the
snakemake object that provides the script access to workflow variables.

morloc programs are typechecked and support type driven design. In the conventional bioinformatics pipeline,683

the form of intermediate data is only vaguely specified by the file type. Few errors can be caught before runtime. In684

contrast, morloc offers type checking and inference that allow the entire pipeline to be checked before it is run. This685

is of practical significance since scientific pipelines are often computationally expensive and the cost of late failure can686

be high. The typed functions also simplify reasoning and improve readability both for humans and machines.687
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4.7 Comparison to programming with one main language and foreign function interfaces (FFI)688

The influenza case study shows how morloc can specify a program that spans three languages: Python, C++, and R.689

For comparison, we implemented the same case study using a single primary language, Python, and making foreign690

function calls to C++ and R (see Figure 8B). For interop we used the rpy2 library for R interop and pybind11 for691

C++. The program retrieves data in Python, calls three sequential C++ functions (to make the tree, classify it, and692

rename the leaves) and then translates the final C++ tree object to an R phylo object and sends it to the R interpreter693

to create the final tree.694

The translation of the C++ tree object uses the same basic steps as morloc’s automatically generated interop code.695

It first calls the C++ unpack function to extract the tree data as a tuple (leaf list, edge list, and node list), then it uses696

rpy2 to cast the data into Python-wrapped R types. Next, it calls the R pack function to create a Python object that697

holds the Python-wrapped R phylo type. This final phylo object is passed to the R plotting function. This manual698

process achieves the same transformation — from C++ tree object to R phylo object — as the code automatically699

generated by morloc. While using rpy2 and pybind11 produces a clean and efficient solution, morloc offers700

several advantages.701

morloc interoperability is declarative and generative. In traditional FFI workflows, developers must research,702

select, and integrate a different interoperability library for each language pair, often learning new APIs and manually703

writing complex data marshaling code. This can lead to code that is tightly coupled to specific interop tools (such as704

rpy2 and pybind11), which adds dependencies and complicates future refactoring and language substitution. In705

morloc, this work is shifted from the programmer to the compiler. The morloc programmer does not need to add any706

interop-specific modifications to their code. They only need to declare the morloc type signature for each imported707

function and then all interop code will be generated by the compiler. This simplifies code, reduces dependencies, and708

allows improvements in the compiler to benefit all morloc programs in parallel.709

morloc symmetrically organizes program logic. In the morloc case study, we present a project with functions710

evenly partitioned between data retrieval steps in Python, algorithmic steps in C++, and visualization in R. With711

morloc, each partition can be presented as a composition of typed, modular functions and these may be transparently712

substituted and extended by the morloc programmer. If instead we choose one focal language, say Python, then the713

data retrieval steps would be accessible to the Python programmer, but the algorithmic and statistical logic would be714

hidden in external codebases written in foreign languages.715

morloc enforces no central runtime language. In the Python case study, Python handles the user interface716

and the coordination of foreign function calls. Switching the base language to R or C++ would require very different717

implementations and dependencies. Because the core language manages the call sequence, data must repeatedly return718

to it. In our Python version, three sequential C++ functions are called. For each, Python stores the result and passes it to719

the next function without using it, adding unnecessary overhead and complexity. In the penultimate step, a tree object720

is returned from C++ to Python and then sent from Python to R for plotting — Python acts only as a conduit. With721

morloc, these redundant Python steps and their unused type representations disappear.722

morloc allows easy polyglot prototyping. The leaf renaming step in the morloc case study starts in R and723

passes a Python renaming function to a C++ tree traversal algorithm. Each leaf renaming step requires a foreign724

call to Python. While not ideal for production code (tens of microseconds of overhead per loop), this freedom of725

mixing functions is powerful, especially in a fast prototyping context. Importantly, the prototype is not a dead end.726

It may be optimized by adding a C++ implementation of the Python function and sourcing it into the morloc code.727

The morloc programmer can focus on quickly building the function composition that best describes the problem.728

In conventional systems, language interop incurs the heavy cost added complexity and future instability that often729

outweighs the advantage of code reuse.730

morloc provides a framework for modular library development. Most work on language interoperability731

focuses on calling one language from another. This allows reuse of code written in foreign libraries. Most commonly,732

slower languages like Python and R call functions in fast C libraries. morloc offers a more symmetrical language-733

agnostic approach. Libraries can be built in the abstract on the foundational common type system. Implementations can734

be imported for defined functions and can share common benchmarking and test suites. From these libraries, we can735

build databases of verified, composable functions.736

5 RELATED WORK737

To the best of my knowledge, morloc is unique as a language based on multi-lingual native function composition738

under a common type system. However, morloc shares the idea of multi-lingual composition with workflow managers;739
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the idea of a common type system with data serialization systems; and the idea of native composition with language740

runtimes and foreign function interfaces. In the following sections, we will discuss these relations.741

5.1 Languages that separate scripts from components742

The separation between script and component is the defining principle of all workflow approaches (Schneider, 1999).743

The script specifies the connectivity of the components and the components perform the actual data transforms. In744

morloc, the script is a functional programming language and the components are native functions from other languages.745

We will discuss the most common types of scripts below.746

Domain specific languages (DSLs) are languages designed for a special purpose, in our case the implementation of747

workflows. Cuneiform is a functional, Erlang-based language focusing on automatic parallelization (Brandt et al., 2017).748

BioShake is a DSL embedded in Haskell that allows metadata for files across a workflow to be expressed and checked749

by the Haskell type system (Bedő, 2019). BioNix implements purely functional workflows using the Nix language and750

package manager (Bedő et al., 2020). Nextflow is a Groovy-based DSL popular in bioinformatics (Di Tommaso et al.,751

2017).752

Scripting languages focused on automating operating system tasks. These include shell languages such as Bash.753

While Bash may be used as a general programming language, it is more often used to manage files and the execution754

of components (programs) written in other languages. In addition to Bash, there are specialized scientific scripting755

languages, for example BPipe (Sadedin et al., 2012) and BigDataScript (Cingolani et al., 2015), which may automate756

job submission and reuse past results.757

Rule-based languages are declarative languages that use a recipe file (e.g., Makefile) to coordinate the execution758

of commands and caching of intermediate results for efficient building of projects. GNU Make is the most common759

of these. While Make is primarily used for software compilation, it has also been applied to scientific analysis (e.g.760

(Askren et al., 2016)). Many workflow languages have descended from it, including the popular Snakemake (Mölder761

et al., 2021) manager.762

Specification languages are declarative languages for describing the behavior and requirements of components and763

their connectivity. Two popular examples are the Common Workflow Language (CWL) (Crusoe et al., 2022) and the764

Workflow Description Language (WDL) (Voss et al., 2017). These workflow specifications may be run by external765

execution engines such as Arvados (Amstutz, 2015), Cromwell (Voss et al., 2017) or Toil (Vivian et al., 2017).766

Language-specific workflow managers are packages in a given language that manage the execution of functions767

in the same language. Examples of these include Parsl (Babuji et al., 2018) in Python and targets in R (Landau,768

2021). Though all composed functions are in one language, functions may make system calls to external applications or769

have foreign function interfaces to external languages.770

5.2 Frameworks for interoperability and serialization771

Interoperability through serialization has been heavily explored and effectively used in practice. Many data serialization772

frameworks use common type systems to generate serialization code. These frameworks include Google Protocol773

Buffers (https://protobuf.dev), Apache Thrift (Slee et al., 2007), and Apache Avro (Vohra and Vohra, 2016). Each of774

these has a means of specifying type schemas that direct the generation of serialization code in supported languages.775

Remote Procedure Call (RPC) systems build on these serialization frameworks to allow calls between systems in a776

language and platform independent manner.777

Interoperability runtimes circumvent the need for serialization by allowing shared memory between languages.778

The Common Language Runtime (CLR) in the .NET framework is one such system that allows typed communication779

between supported languages (Gough and Gough, 2001). Interoperability is based on a common binary layout specified780

by the Common Language Infrastructure (CLI). Languages designed for this infrastructure can share objects without781

any special boilerplate. Similarly, GraalVM allows interoperability between supported languages by executing them in782

a common runtime through the TruffleVM framework (Grimmer et al., 2015).783

Beyond these general purpose runtimes, many tools have been developed to enable pairs of languages to interoperate784

seamlessly. The Simplified Wrapper and Interface Generator (SWIG) (Beazley et al., 1996) allows C and C++ code to785

be called from many high-level programming languages including Python, Perl, Ruby, and Tcl. MetaCall goes even786

further, offering binary interfaces between a wide range of languages (https://metacall.io/). Other tools are specialized787

for one pair of languages. These include the ctypes and pybind11 modules for calling C++ from Python; Rcpp788

for calling C++ from R (Eddelbuettel and François, 2011), and PypeR (Xia et al., 2010) and rpy2 for calling R from789

Python.790
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While these projects overlap with morloc, their focus differs. Their purpose is to provide interoperability laterally791

between languages. They are a glue between languages. Dedicated code is written in the target languages to allow them792

to communicate. morloc, in contrast, is a system under languages that works in the background to tie the polyglot793

components together. There is no morloc-specific code written in the component source.794

6 FUTURE WORK795

The current implementation of morloc (v0.53.7) demonstrates a strongly-typed solution to high-performance, multi-796

lingual function composition. morloc is still being actively developed. A few of the major goals for future work are797

listed below:798

Improve workflow features. Though morloc has experimental support for remote job execution and caching,799

it lacks the full feature set of standard workflow programs. Until these features are mature, hybrid solutions using a800

conventional workflow manager and morloc-generated components may be a helpful compromise (see Figure 8D).801

Future work includes improved error recovery, monitoring, and broader support for cloud computing.802

Increase language support. Currently only C++, Python, and R are supported. An obvious goal is to add more803

languages and streamline the onboarding process. A deeper challenge is improving language feature support. Polyglot804

morloc programs are currently limited to composition of eager functions of immutable and non-streaming data.805

Further generalizing morloc will require additional work on the backend generators and the typesystem.806

Expand the type system. We plan to add sum types, refinement types, contracts, extensible records, and effect807

handling. Sum types, though absent in many languages, greatly improve data modeling. Refinement types will allow808

the expected behavior of a function to be described more clearly. Contracts allow the specification of pre- and post-809

conditions to a function. Extensible records will improve reuse and specialization of records and tables. Effect handling810

will allow behavior such as mutability, console printing, randomness, and exceptions to be modeled by the user and811

correctly handled by the compiler.812

Develop the ecosystem. Usability can be improved by generating executables with richer usage statements, error813

messages, profiling options, debugging support, dependency handling, and documentation integration. The generators814

could also be extended to make REST APIs or simple graphical user interfaces in addition to command line executables.815

We also intend to develop a searchable database of functions that can integrate with IDEs and AI code generators.816

Open the black boxes. Currently the value checker cannot determine if foreign source code is what morloc817

expects. The source code is a black box. But we may be able to peak inside with LLMs and other static analysis tools.818

We may similarly be able to automatically generate candidate type signatures for foreign libraries, reducing integration819

effort and improving safety.820

7 CONCLUSION821

We present morloc as an alternative to the file and application based paradigm that now dominates bioinformatics.822

Replacing the old paradigm is an ambitious but necessary goal. It will require stripping existing monolithic applications823

down to their algorithmic cores and exposing them as simple programmatic libraries. These libraries may then be824

raised into the morloc ecosystem by adding type signatures to exported functions. Functions may be shared through825

functional databases searchable by type. These may be easily benchmarked and integrated into new pipelines. Novel826

algorithmic work may be shared as ageless functions rather than heavy, idiosyncratic, high-maintenance applications.827

Conventional bioinformatics file formats may be replaced with simple, well-defined, generic data structures that map828

cleanly to native types in memory and storage types on the disk or in databases. This transition will require recreating829

most bioinformatics code. Though this is a difficult path, the challenge may lessen as AI advances. We hope to free830

future scientists from floundering in software engineering and infrastructure minutiae and instead focus on designing831

and using elegant functions and solving logical problems using the languages of their choice.832

8 AVAILABILITY833

The morloc source code is published under a GPL license and is freely available on GitHub (https://github.com/morloc-834

project/morloc). The present work describes morloc version 0.53.7. We make no guarantees of backwards835

compatibility for this version. The influenza case study, the five alternative implementations, and all benchmarking836

code are available at https://github.com/morloc-project/examples (release v1.1).837
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